References

Agonafir, C., Lakhankar, T., Khanbilvardi, R., Krakauer, N., Radell, D., & Devineni, N. (2022). A machine learning approach to evaluate the spatial variability of New York City’s 311 street flooding complaints. Computers, Environment and Urban Systems, 97, 101854.
Agonafir, C., Pabon, A. R., Lakhankar, T., Khanbilvardi, R., & Devineni, N. (2022). Understanding New York City street flooding through 311 complaints. Journal of Hydrology, 605, 127300.
American Statistical Association (ASA). (2018). Ethical guidelines for statistical practice.
Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. J. (1984). Classification and regression trees. Wadsworth.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Computing Machinery (ACM), A. for. (2018). Code of ethics and professional conduct.
Congress, U. S. (1990). Americans with disabilities act of 1990 (ADA).
De Cock, D. (2009). Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. Journal of Statistics Education, 17(3), 1–13. https://doi.org/10.1080/10691898.2009.11889627
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
Health, U. S. D. of, & Services, H. (1996). Health insurance portability and accountability act of 1996 (HIPAA).
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 3146–3154.
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society Series A: Statistics in Society, 135(3), 370–384.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 6638–6648.
Protection of Human Subjects of Biomedical, N. C. for the, & Research, B. (1979). The belmont report: Ethical principles and guidelines for the protection of human subjects of research.
Team, F. D. S. D. (2019). Federal data strategy 2020 action plan.
VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. O’Reilly Media, Inc.
Yu, B., & Barter, R. L. (2024). Veridical data science: The practice of responsible data analysis and decision making. MIT Press.