References
Agonafir, C., Lakhankar, T., Khanbilvardi, R., Krakauer, N., Radell, D.,
& Devineni, N. (2022). A machine learning approach to evaluate the
spatial variability of New York
City’s 311 street flooding complaints. Computers,
Environment and Urban Systems, 97, 101854.
Agonafir, C., Pabon, A. R., Lakhankar, T., Khanbilvardi, R., &
Devineni, N. (2022). Understanding New York
City street flooding through 311 complaints. Journal of
Hydrology, 605, 127300.
American Statistical Association (ASA). (2018). Ethical guidelines
for statistical practice.
Bansal, S. (2018). Python data visualisation made easy with
plotnine: A how-to guide. https://medium.com/@suraj_bansal/python-data-visualisation-made-easy-with-plotnine-a-how-to-guide-f71e321bdef1;
Medium.
Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. J. (1984).
Classification and regression trees. Wadsworth.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting
system. Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Computing Machinery (ACM), A. for. (2018). Code of ethics and
professional conduct.
Congress, U. S. (1990). Americans with disabilities act of 1990
(ADA).
De Cock, D. (2009). Ames, Iowa: Alternative to the
Boston housing data as an end of semester regression
project. Journal of Statistics Education, 17(3), 1–13.
https://doi.org/10.1080/10691898.2009.11889627
Domingos, P., & Pazzani, M. (1997). On the optimality of the simple
Bayesian classifier under zero-one loss. Machine
Learning, 29(2-3), 103–130.
Friedman, J. H. (2001). Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5),
1189–1232.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning: Data mining, inference, and prediction.
Springer.
Health, U. S. D. of, & Services, H. (1996). Health insurance
portability and accountability act of 1996 (HIPAA).
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., &
Liu, T.-Y. (2017). LightGBM: A highly efficient gradient
boosting decision tree. Advances in Neural Information Processing
Systems, 3146–3154.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the
ideas immanent in nervous activity. The Bulletin of Mathematical
Biophysics, 5(4), 115–133.
McInnes, L., Healy, J., Saul, N., & Großberger, L. (2018).
UMAP: Uniform manifold approximation and projection.
Journal of Open Source Software, 3(29). https://doi.org/10.21105/joss.00861
Minsky, M., & Papert, S. A. (1969). Perceptrons: An introduction
to computational geometry. MIT Press.
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear
models. Journal of the Royal Statistical Society Series A:
Statistics in Society, 135(3), 370–384.
Pace, R. K., & Barry, R. (1997). Quick computation of regressions
with a spatially autoregressive dependent variable. Geographical
Analysis, 29(3), 232–247.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin,
A. (2018). CatBoost: Unbiased boosting with categorical features.
Advances in Neural Information Processing Systems, 6638–6648.
Protection of Human Subjects of Biomedical, N. C. for the, &
Research, B. (1979). The belmont report: Ethical principles and
guidelines for the protection of human subjects of research.
Rish, I. (2001). An empirical study of the naive Bayes
classifier. IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, 41–46.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, 65(6), 386.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature,
323(6088), 533–536. https://doi.org/10.1038/323533a0
Sarkar, D. (DJ). (2018). A comprehensive guide to the grammar of
graphics for effective visualization of multi-dimensional data. https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149/;
Medium, Towards Data Science.
Team, F. D. S. D. (2019). Federal data strategy 2020 action
plan.
VanderPlas, J. (2016). Python data science handbook:
Essential tools for working with data. O’Reilly Media,
Inc.
Wilkinson, L. (2012). The grammar of graphics. Springer.
Yu, B., & Barter, R. L. (2024). Veridical data science: The
practice of responsible data analysis and decision making. MIT
Press.
Zhang, H. (2004). The optimality of naive Bayes. AAAI
Conference on Artificial Intelligence.